

LA-UR-21-28100

Approved for public release; distribution is unlimited.

Title: Linearized three-phase optimal power flow models for distribution

grids

Author(s): Girigoudar, Kshitij Ishwar

Intended for: Student lightning talks

Issued: 2021-08-12

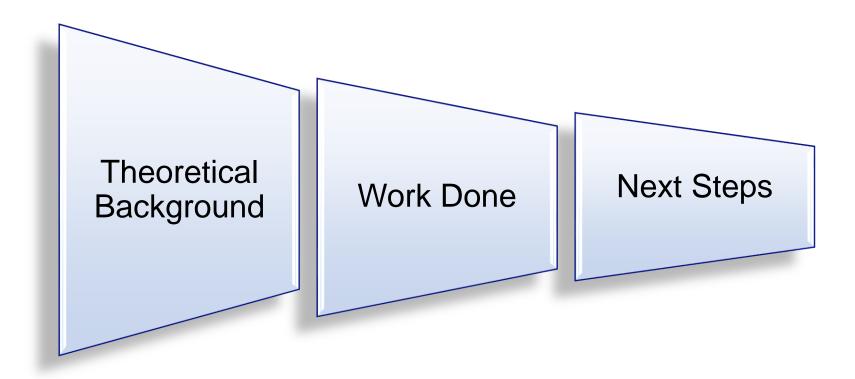
Linearized Three-Phase Optimal Power Flow Models for Distribution Grids

Presented by: Kshitij Girigoudar

Mentors: David Fobes & Russell Bent

Student Lightning Talks

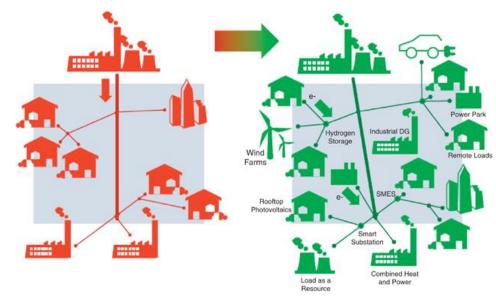
10 August 2021



Theoretical Background **Next Steps** Distribution Work Done Grids **Optimal Power** Flow

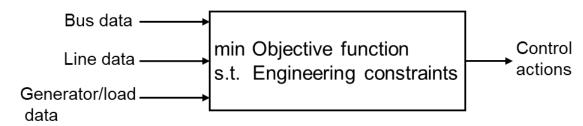
Distribution Grids

- Interconnection between transmission grid and end consumers
- Characteristics different from transmission grid
 - Distributed energy resources (DERs)
 - Radial or near radial structure
 - Unbalanced three-phase systems
 - Untransposed lines with high R/X ratio
 - Asymmetrical loads



Optimal Power Flow (OPF)

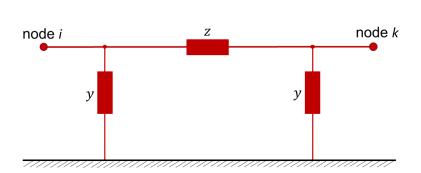
 Optimization problem solving power flow while also optimizing operating conditions and adjusting control actions



- PowerModelsDistribution.jl- Julia package for steady-state distribution grid optimization
 - PowerModels.jl- steady-state transmission grid optimization

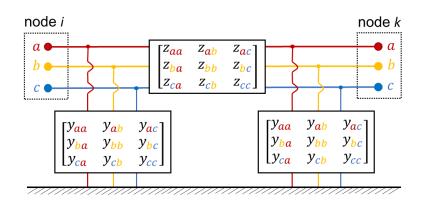
PowerModels vs PowerModels Distribution

Transmission line



Balanced system

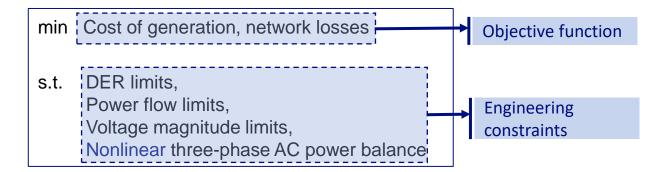
Distribution line



Unbalanced system with interphase coupling

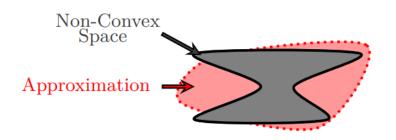
Three-phase Optimal Power Flow

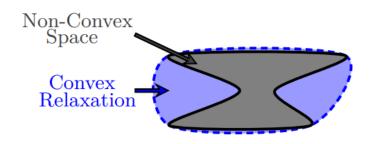
Nonlinear, nonconvex optimization problem solved using lpopt



- Problem: Challenging to solve for large, realistic distribution grids
- Solution: Reduce computational complexity using approximations/relaxations

Approximations vs Relaxations

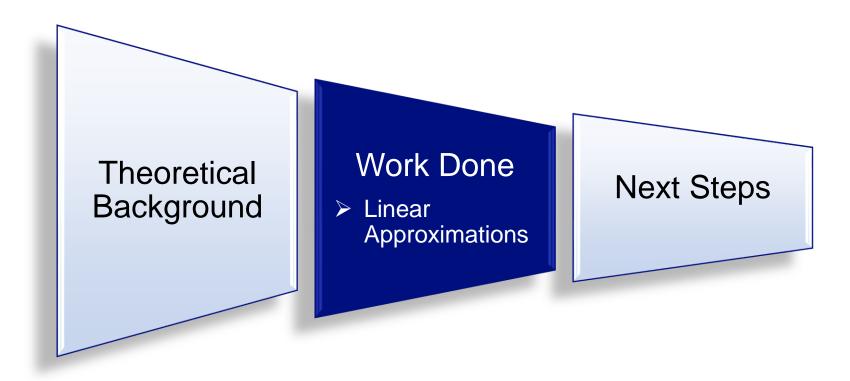




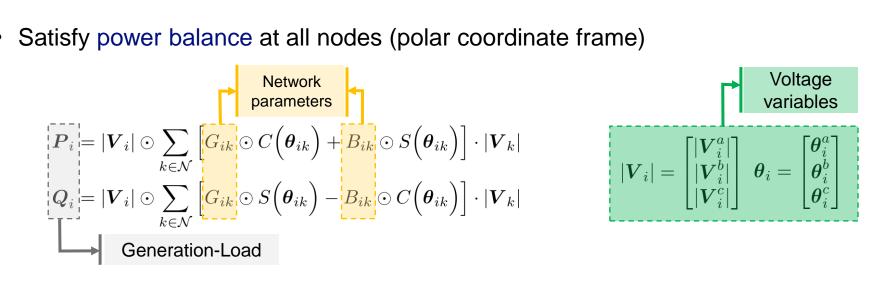
Molzahn, Daniel K., and Ian A. Hiskens. "A survey of relaxations and approximations of the power flow equations." Foundations and Trends® in Electric Energy Systems 4.1-2 (2019): 1-221.

- Does not enclose non-convex. feasible space
- More computationally tractable
- Example: LinDistFlow

- Enclose non-convex feasible space
- Inefficient scaling for large systems
- Restrictions on possible objectives
- Example: SDP, SOC



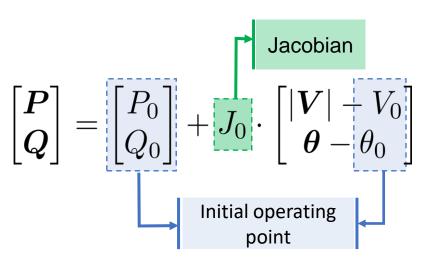
Nonlinear AC Power Balance Equations



$$C(\boldsymbol{\theta}_{ik}) = \begin{bmatrix} \cos(\boldsymbol{\theta}_{i}^{a} - \boldsymbol{\theta}_{k}^{a}) & \cos(\boldsymbol{\theta}_{i}^{a} - \boldsymbol{\theta}_{k}^{b}) & \cos(\boldsymbol{\theta}_{i}^{a} - \boldsymbol{\theta}_{k}^{c}) \\ \cos(\boldsymbol{\theta}_{i}^{b} - \boldsymbol{\theta}_{k}^{a}) & \cos(\boldsymbol{\theta}_{i}^{b} - \boldsymbol{\theta}_{k}^{b}) & \cos(\boldsymbol{\theta}_{i}^{b} - \boldsymbol{\theta}_{k}^{c}) \\ \cos(\boldsymbol{\theta}_{i}^{c} - \boldsymbol{\theta}_{k}^{a}) & \cos(\boldsymbol{\theta}_{i}^{c} - \boldsymbol{\theta}_{k}^{b}) & \cos(\boldsymbol{\theta}_{i}^{c} - \boldsymbol{\theta}_{k}^{c}) \end{bmatrix} \qquad S(\boldsymbol{\theta}_{ik}) = \begin{bmatrix} \sin(\boldsymbol{\theta}_{i}^{a} - \boldsymbol{\theta}_{k}^{a}) & \sin(\boldsymbol{\theta}_{i}^{a} - \boldsymbol{\theta}_{k}^{b}) & \sin(\boldsymbol{\theta}_{i}^{a} - \boldsymbol{\theta}_{k}^{c}) \\ \sin(\boldsymbol{\theta}_{i}^{b} - \boldsymbol{\theta}_{k}^{a}) & \sin(\boldsymbol{\theta}_{i}^{b} - \boldsymbol{\theta}_{k}^{b}) & \sin(\boldsymbol{\theta}_{i}^{c} - \boldsymbol{\theta}_{k}^{c}) \\ \sin(\boldsymbol{\theta}_{i}^{c} - \boldsymbol{\theta}_{k}^{a}) & \sin(\boldsymbol{\theta}_{i}^{c} - \boldsymbol{\theta}_{k}^{b}) & \sin(\boldsymbol{\theta}_{i}^{c} - \boldsymbol{\theta}_{k}^{c}) \end{bmatrix}$$

First-order Taylor (FOT) Approximation

Linearized power balance equations



$$J = \begin{bmatrix} \frac{\delta \mathbf{P}}{\delta |\mathbf{V}|} & \frac{\delta \mathbf{P}}{\delta \boldsymbol{\theta}} \\ \frac{\delta \mathbf{Q}}{\delta |\mathbf{V}|} & \frac{\delta \mathbf{Q}}{\delta \boldsymbol{\theta}} \end{bmatrix}$$

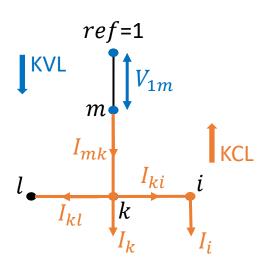
Forward-Backward Sweep (FBS)

Backward Sweep (KCL)

$$egin{aligned} m{I}_i &= m{I}_{ki} = rac{(m{P}_i - jm{Q}_i)}{m{V}_{i0}} & ext{Initial} \ m{operating point} \ m{I}_{mk} &= m{I}_k + \sum_{n \in \{i,l\}} m{I}_{kn} \end{aligned}$$

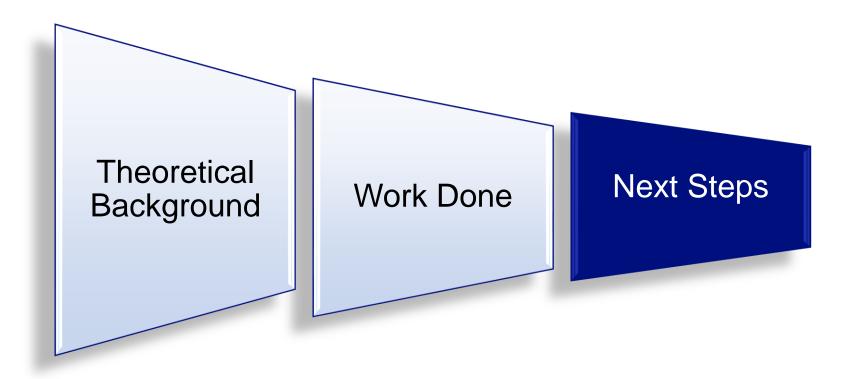
Forward Sweep (KVL)

$$\boldsymbol{V}_m = \boldsymbol{V}_1 - \underbrace{Z_{1m} \cdot \boldsymbol{I}_{1m}}_{V_{1m}}$$



Summary

Method	Advantages	Limitations
Three-phase OPF	Converges to AC feasible solution	Large computation time
FOT-OPF	Best local approximator	Jacobian calculation can be time-consuming
FBS-OPF	Faster than FOT since it exploits radial topology	Less accurate compared to FOT



Next Steps

- Testing performance of linear approximations on large, realistic distribution grids
 - Compare solution accuracy and computation time
 - Use different initial operating points
- Warm-starting three-phase OPF to check for improvement in computation time

Thank you for your attention!

With great **power** comes great **responsibility** ...

... and greater **electricity bill**!!

Questions

